a2 United States Patent
Drobinsky et al.

US009137162B2

(10) Patent No.: US 9,137,162 B2
(45) Date of Patent: Sep. 15, 2015

(54) NETWORK TRAFFIC ROUTING
OPTIMIZATION

(71) Applicants: Alex Drobinsky, Ra’anana (IL); Isaac
Eliassi, Ra’anana (IL); Or Igelka,
Ramat Gan (IL)

(72) Inventors: Alex Drobinsky, Ra’anana (IL); Isaac
Eliassi, Ra’anana (IL); Or Igelka,
Ramat Gan (IL)

(73) Assignee: SAP SE, Walldorf (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 112 days.

(21) Appl. No.: 13/948,806

(22) Filed: Jul. 23, 2013

(65) Prior Publication Data
US 2015/0029865 Al Jan. 29, 2015

(51) Int.CL
HO4L 12/801 (2013.01)
HO4L 12/721 (2013.01)
(52) US.CL
CPC oo HO4L 47/12 (2013.01); HO4L 45/124

(2013.01); HO4L 45/123 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,317,566 A 5/1994 Joshi

6,606,303 Bl 8/2003 Hassel et al.

6,973,053 B1* 12/2005 Passmanetal. 370/310
7,142,503 B1 11/2006 Grant et al.

7,321,322 B2 1/2008 Helfman et al.

7,353,537 B2 4/2008 Ackerman et al.

7,616,642 B2 11/2009 Anke et al.

7,699,234 B2 4/2010 Neugebauer et al.
7,970,923 B2 6/2011 Pedersen et al.
8,255,570 B2 8/2012 Samuels et al.
8,275,829 B2 9/2012 Plamondon
8,352,176 B2 1/2013 Kaldewey et al.
8,396,929 B2 3/2013 Helfman et al.
2006/0013230 Al* 1/2006 Bosloyetal. 370/395.42
2006/0253607 Al 11/2006 Schollmeier et al.
2007/0156372 Al 7/2007 Christ et al.
2007/0294028 Al 12/2007 Gray et al.

2009/0046714 Al* 2/2009 Holmeretal. 370/389
2009/0109849 Al* 4/2009 Woodetal. ... 370/235
2009/0113412 Al 4/2009 Shribman et al.

2009/0287968 Al* 11/2009 Leeetal. ... 714/699
2009/0292824 Al* 11/2009 Marashietal. 709/247
2010/0023925 Al 1/2010 Shribman et al.

2010/0246602 Al* 9/2010 Barreto etal. 370/466
2011/0191442 A1* 82011 Ovsiannikov 709/218

2011/0292933 Al* 12/2011 Rodriguez Perez etal. .. 370/389
2012/0011271 Al 1/2012 Zhao et al.
2012/0089664 Al 4/2012 Igelka

OTHER PUBLICATIONS

U.S. Appl. No. 13/362,206, filed Jan. 31, 2012, Or Igelka.
U.S. Appl. No. 13/905,910, filed May 30, 2013, Or Igelka.

* cited by examiner

Primary Examiner — Dung B Huynh
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

The present disclosure describes methods, systems, and com-
puter program products for providing network traffic routing
optimizations. One computer-implemented method includes
calculating a direct connection cost for network traffic
between two points in a network, the network including one
or more nodes of an accelerated application delivery (Ac-
cAD) network, calculating an AccAD connection cost for the
network traffic between the two points in the network using at
least one node of the AccAD network, comparing the calcu-
lated direct connection cost and the AccAD connection cost,
and determining whether the direct connection cost is greater
than the sum of the AccAD connection cost and a minimum
cost threshold value.

27 Claims, 7 Drawing Sheets

N1

SERVER 1

SERVER 2

AccAD
SERVER3 NODE 4

150,160,170 150,160,170 150,160,170

VN2

CLIENT 1

CLIENT 2

CLIENT 3

SERVER 4

AccAD

150,160,170 150,160,170

CLIENT 4

AccAD

SERVER & NODE 6,

—_——
102 150,160,170

NODE 7 CLIENT 5

150,160,170 140

U.S. Patent Sep. 15, 2015 Sheet 1 of 7 US 9,137,162 B2

"¢ FIG.1
CLIENT
Ty
PROCESSOR | ——)
/
144 1/46 | _| emoRY
CLEENT | | 148
APPLICATION
y —

149~]" INTERFACE

130

150~ CLIENT FRONT
END (CFE)

160 130
/
SERVER
FRONT END
130 (SFE)
\ i
_~1 REPOSITORY SERVER > INTERFACE
170 102 \
— 104
PROCESSOR j= —
A (107
100 105
SERVER -
APPLICATION MEMORY
[
API] 106
{1
112 /3
SERVICE LAYER e _

U.S. Patent Sep. 15, 2015 Sheet 2 of 7 US 9,137,162 B2

200a
202
/

1 0\2 160 150 1 /40
Y Y
SERVER 1 SFE (SERVER CFE CLIENT 1

FRONT END) (CLIENT
SERVER 2 FRONT END) CLIENT 2
FIG. 2A
200b
202
/
14\0 v 160 150 ! /02
CLIENT SERVER
(SERVER 1) SFE CFE (CLIENT 1)
(SERVER (CLIENT
FRONT END) FRONT END)
SERVER 2 CLIENT 2

FIG. 2B

U.S. Patent Sep. 15, 2015 Sheet 3 of 7 US 9,137,162 B2

300
160 150
102 140
\ SFE /
SERVER (SERVER CLIENT
FRONT END)
FIG. 3 150
COST=2 ;00
COST=INFINITE
CONNECTION IS
DOWN USUALLY o
) COST=1 _
SERVER | — — — (SERVER ©LENT }COSTE T el enT
7 FRONT END) FRONT END) N
102 160 150 140
FIG. 4
500
COST=1+1+1=3>2
193 1?0
_ SFE
SERVER COST=1 (SERVER COST=1 CLIENT
\ FRONT END)

160 150
/ COST=2

202 FIG. 5

U.S. Patent Sep. 15, 2015 Sheet 4 of 7 US 9,137,162 B2

600a

150,160,170 150,160,170 150,160,170

AccAD AccAD AccAD
SERVER 1 CLIENT 1
SERVER 2 CLIENT 2
[AccAD AccAD
SERVER 3 ™\ NODE 4 CLIENT 3
150,160,170
150,160,170
SERVER 4 CLIENT 4
[AccAD AccAD
SERVER 5 ™\ NODE 6 CLIENT 5
\=/=/ =v=/
102 150,160,170 150,160,170 140

FIG. 6A

U.S. Patent Sep. 15, 2015 Sheet 5 of 7 US 9,137,162 B2

600b
\
VN1 VN2
150 160,170 150,160,170 150,160,170
SERVER 1 CLIENT 1
SERVER 2 CLIENT 2
SERVER 3 CLIENT 3
150,160,170 | 150,160,170
SERVER 4 CLIENT 4
AccAD
SERVER 5 CLIENT 5
102 150,160,170 150,160,170 140

FIG. 6B

US 9,137,162 B2

Sheet 6 of 7

Sep. 15, 2015

U.S. Patent

HINYHIS (=

IN3MD

(
20}

N
ovl

N COOHYOSHOIAN N 7 GOOHYOEHOIAN N 7 GOOHYOEHOIAN 7

S~ TVNLYIA

~ 7>~ VNLHIA

7S~ _ v -7

- -— -

X

004

U.S. Patent Sep. 15, 2015 Sheet 7 of 7

800

802 CALCULATE A DIRECT CONNECTION
™ COST FOR NETWORK TRAFFIC
BETWEEN TWO POINTS IN A NETWORK

Y

CALCULATE AN ACCELERATED APPLICATION
804 DELIVERY (AccAD) CONNECTION COST FOR
N THE NETWORK TRAFFIC BETWEEN THE TWO
POINTS IN THE NETWORK USING AT LEAST
ONE NODE OF THE AccAD NETWORK

Y

806 COMPARE CALCULATED DIRECT
™~ CONNECTION AND AccAD
CONNECTION COSTS

(DIRECT COST) >
((AccAD COST + MINIMUM
COST THRESHOLD)))?

808

US 9,137,162 B2

ROUTE THE NETWORK
TRAFFIC DIRECTLY
BETWEEN THE TWO

POINTS IN THE NETWORK

ROUTE THE NETWORK TRAFFIC
BETWEEN THE TWO POINTS IN THE
810 NETWORK THROUGH THE AT LEAST
ONE NODE OF THE AccAD NETWORK

FIG. 8

N
812

US 9,137,162 B2

1
NETWORK TRAFFIC ROUTING
OPTIMIZATION

BACKGROUND

When optimizing network traffic, the usual approach is to
find the shortest paths from a client to a desired server across
a network topology. This shortens the time it takes for the
network traffic to pass between the client and the desired
server and vice versa. Data compression and caching tech-
nologies are also often used to reduce the amount of data
transferred across a network and to speed up network service
data request/response times, respectively. Finding a shortest
path, data compression, and caching configurations are not
always optimal solutions for full network resource utilization
in the delivery of network services across sub-optimal routes.
As a result, provided network services are underperforming
and providing network services is inefficient and requires
unnecessary resources; increasing a total cost of ownership.

SUMMARY

The present disclosure relates to computer-implemented
methods, computer-readable media, and computer systems
for providing network traffic routing optimizations One com-
puter-implemented method includes calculating a direct con-
nection cost for network traffic between two points in a net-
work, the network including one or more nodes of an
accelerated application delivery (AccAD) network, calculat-
ing an AccAD connection cost for the network traffic between
the two points in the network using at least one node of the
AccAD network, comparing the calculated direct connection
cost and the AccAD connection cost, and determining
whether the direct connection cost is greater than the sum of
the AccAD connection cost and a minimum cost threshold
value.

Other implementations of this aspect include correspond-
ing computer systems, apparatuses, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods. A system of
one or more computers can be configured to perform particu-
lar operations or actions by virtue of having software, firm-
ware, hardware, or a combination of software, firmware, or
hardware installed on the system that in operation causes or
causes the system to perform the actions. One or more com-
puter programs can be configured to perform particular
operations or actions by virtue of including instructions that,
when executed by data processing apparatus, cause the appa-
ratus to perform the actions.

The foregoing and other implementations can each option-
ally include one or more of the following features, alone or in
combination:

A first aspect, combinable with the general implementa-
tion, wherein connection cost can include consideration of at
least one of bandwidth, latency, a network hop count, a num-
ber of network links between the two points, CPU usage,
memory usage, disk space usage, a quality-of-service (QoS)
value, a round trip time (RTT) value, a network congestion
value, an amount of network traffic, a number of network
connections, network connection interval length, a traffic
type, preference tables, or physical destination.

A second aspect, combinable with any of the previous
aspects, comprising routing the network traffic directly
between the two network points if the direct connection cost
is less than or equal to the sum of'the AccAD connection cost
and the minimum cost threshold value.

10

15

20

25

30

35

40

45

50

55

60

65

2

A third aspect, combinable with any of the previous
aspects, comprising routing the network traffic between the
two points in the network through the at least one node of the
AccAD network if the direct connection cost is greater than
the sum of the AccAD connection cost and the minimum cost
threshold value.

A fourth aspect, combinable with any of the previous
aspects, wherein the AccAD network is divided into at least
two virtual neighborhoods.

A fifth aspect, combinable with any of the previous aspects,
wherein network traffic between AccAD network nodes in a
virtual neighborhood is not accelerated.

A sixth aspect, combinable with any of the previous
aspects, wherein network traffic between virtual neighbor-
hoods is accelerated.

A seventh aspect, combinable with any of the previous
aspects, comprising accelerating at least one network link
between the AccAD network nodes once an acceleration of
another network link between any two AccAD network nodes
is required.

An eighth aspect, combinable with any of the previous
aspects, wherein the acceleration of any network link
between the AccAD network nodes is performed regardless
ofthe minimum cost threshold value and an association of the
AccAD network nodes to one or more virtual neighborhoods.

The subject matter described in this specification can be
implemented in particular implementations so as to realize
one or more of the following advantages. First, one or more
client front ends (CFE), server front ends (SFE) are associ-
ated with a client and server (typically geographically close),
respectively, to provide efficient entry into an accelerated
application delivery (AccAD) network. Second, nodes that
make up the AccAD network (e.g., CFE, SFE, and a reposi-
tory node) can dynamically switch roles depending upon
context to provide more efficient functionality based on
AccAD network operation and/or user needs. Third, AccAD
node links can be discovered automatically to permit various
routing optimizations to be calculated using actual AccAD
network data/status parameters. Fourth, a cost is calculated to
transfer network traffic/data between two nodes of the
AccAD network. These costs are used, along with a minimum
cost (MC) threshold value to accelerate the longest (costliest)
paths of the AccAD network in order to maximize AccAD
network resource utilization. The use of the MC threshold
only allows the longest (costliest) paths in the network to be
accelerated instead of arbitrarily accelerating a network con-
nection between any two points in a network simply upon a
cost value calculation. Adjustment of the MC thresholds per-
mits general dynamic selective acceleration of data through
the AccAD network. In other words, the selective accelera-
tion is not necessarily set to a constant setting, but the setting
may be dynamically set/modified based upon live/changing
network parameters used to calculate costs. Fifth, the use of
the MC threshold creates “virtual neighborhoods” in which
delivering services using the AccAD network inside a delin-
eated virtual neighborhood might actually harm the total per-
formance of the network while between the various virtual
neighborhoods service deliveries would automatically be
defined based on different paths and requirements and would
thus improve the total performance of the network. Sixth, the
described subject matter can be used to also improve client
request response times, accelerate the delivery of network
services, reduce the load on different network links/paths/
nodes, and/or reduce the need to cache resources/data within
nodes along a network path that will likely not use the cached
resources/data. Other advantages will be apparent to those
skilled in the art.

US 9,137,162 B2

3

The details of one or more implementations of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example distrib-
uted computing system for providing network traffic routing
optimizations according to an implementation.

FIGS. 2A & 2B are block diagrams illustrating network/
accelerated application delivery (AccAD) network traffic
delivery according to an implementation.

FIG. 3 is a block diagram illustrating redirecting AccAD
network traffic to a more optimal route according to an imple-
mentation.

FIG. 4 is a block diagram illustrating, according to an
implementation, a server front end (SFE) redirecting traffic to
an associated server as its network connection to the associ-
ated server is unavailable.

FIG. 5 is a block diagram illustrating, according to an
implementation, a client front end (CFE) redirecting AccAD
network traffic from a client directly to a server.

FIG. 6A is a block diagram illustrating an example AccAD
topology according to an implementation.

FIG. 6B is a block diagram illustrating an example AccAD
topology split into virtual neighborhoods according to an
implementation.

FIG. 7 is a block diagram illustrating AccAD nodes shared
between multiple virtual neighborhoods according to an
implementation.

FIG. 8 is a flow chart illustrating a method for providing
network traffic routing optimizations according to an imple-
mentation.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This disclosure generally describes computer-imple-
mented methods, computer-program products, and systems
for providing network traffic routing optimizations. The fol-
lowing description is presented to enable any person skilled in
the art to make and use the invention, and is provided in the
context of one or more particular implementations. Various
modifications to the disclosed implementations will be
readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other implemen-
tations and applications without departing from scope of the
disclosure. Thus, the present disclosure is not intended to be
limited to the described and/or illustrated implementations,
but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

When optimizing network traffic, the usual approach is to
find the shortest paths from a client to a desired server across
a network topology. This shortens the time it takes for the
network traffic to pass between the client and the desired
server and vice versa. Data compression and caching tech-
nologies are also often used to reduce the amount of data
transferred across a network and to speed up network service
data request/response times, respectively. Finding a shortest
path, data compression, and caching configurations are not
always optimal solutions for full network resource utilization
in the delivery of network services across sub-optimal routes.
As a result, provided network services are underperforming

10

15

20

25

30

35

40

45

50

55

60

65

4

and providing network services is inefficient and requires
unnecessary resources; increasing a total cost of ownership.

The disclosure describes the use of an accelerated applica-
tion delivery (AccAD) network that integrates with network
clients and servers to provide network traffic routing optimi-
zations to accelerate connections between network nodes. In
general, one or more client front ends (CFE), server front ends
(SFE) are associated with a client and server (typically geo-
graphically close), respectively. Additionally, one or more
repositories are also associated with the one or more CFEs/
SFEs. The CFEs, SFEs, and repositories are each considered
AccAD “nodes” and make up the AccAD network. Further,
an AccAD “node” can be an SFE, CFE, or a repository
depending on context. For example, in a particular AccAD
network landscape (topology), a particular node may act as a
repository, while in another topology (e.g., a network failover
situation), the same node may not be recognized as a reposi-
tory or be dynamically configured/re-tasked from another
AccAD node role to act as an additional repository, a CFE,
and/or a SFE. In another example, if an AccAD node receives
a request from a CFE for a service from a server near the
AccAD node, the AccAD node can act as an SFE, while if the
AccAD node receives a request from a client for a service
which is delivered to it by a SFE, the AccAD node can act as
a CFE.

The described implementation allows for automatic dis-
covery/manual configuration of AccAD links (a network link
between two AccAD nodes). The discovered/configured
AccAD links (and associated network parameters) are made
available for analysis to determine network traffic routing
optimizations. Live network data can be used in conjunction
with the AccAD links to adjust the AccAD network/provided
network services on-the-fly between clients and servers.

The “cost” is calculated of both direct network connections
(Costl) between clients/servers and of some/all paths (Cost2)
given particular AccAD links. Costs can be calculated, at least
in part, by using a network parameter and/or combinations of
network parameters, such as, but not limited to bandwidth,
latency, a network hop count, a number of network links
between the two points, a quality-of-service (QoS) value, a
round trip time (RTT) value, a network congestion value, an
amount of network traffic, a number of network connections,
network connection interval length, a traffic type (e.g., is the
traffic compressible, cached, etc.), preference tables, physical
destination, and/or the like. For example, a larger network
hop count could translate into a higher cost value, such that
the calculated cost of a direct network connection between a
client and server may be determined to be Cost1=5 while the
cost of traversing one or more paths of the AccAD network
may be determined to be Cost2=4. Note that in some imple-
mentations, the direct connection between the client and the
server could be shorter geographically, but overall costlier
than an AccAD network path that is geographically longer but
is using faster and/or more stable network connections and/or
less costly connections. In this example, traversing the
AccAD network would be the optimal (accelerated) solution
given the two choices and would typically be selected for
efficiency, speed, etc. A network administrator can configure
the network based on a perspective of “cost”. For example,
the network administrator can configure the network where a
higher cost represents a slower connection, so a lower cost
would represent a faster delivery.

Additionally, aminimum cost (MC) threshold can be intro-
duced to add to the Cost2 value in order to adjust its value. The
MC threshold can be either predefined and/or automatically
decided on-the-fly according to the different live network
parameters, in general, and/or in relation to two particular

US 9,137,162 B2

5

network points (e.g., a client and server). In this case, only if
(Costl)>(Cost2+some MC threshold) then the communica-
tion between two points is accelerated through the optimal
route provided by the AccAD network. In some implementa-
tions, the threshold is used to permit acceleration only of the
most costly paths through the AccAD network while prevent-
ing other paths through the AccAD network from being accel-
erated. In other words, the higher the MC threshold, fewer
less-costly network paths will be accelerated through the
AccAD network. The use of the MC threshold also creates
“virtual neighborhoods” (see FI1G. 6B for additional discus-
sion of virtual neighborhoods) in which delivering services
using the AccAD network inside a delineated virtual neigh-
borhood would actually harm the total performance of the
network because (Costl)<=(Cost2+some MC threshold)
while between the various virtual neighborhoods service
deliveries would automatically be defined based on different
paths and requirements. In some implementations, each vir-
tual neighborhood can be associated with a unique MC
threshold value. In some implementations, one or more vir-
tual neighborhoods can share an associated MC threshold
value. The use of the MC threshold forces searches to focus
on the longest (costliest) paths in the network and only allows
them to be accelerated instead of arbitrarily accelerating a
network connection between any two points in a network
simply upon a cost value calculation. Adjustment of the MC
thresholds permits general dynamic selective acceleration of
data through the AccAD network.

FIG. 1 is a block diagram illustrating an example distrib-
uted computing system (EDCS) 100 for providing network
traffic routing optimizations according to an implementation.
The illustrated EDCS 100 includes or is communicably
coupled with a server 102, a client 140, a client front end
(CFE) 150, a server front end (SFE) 160, and a repository 170
that communicate across a network 130. In some implemen-
tations, one or more components of the EDCS 100 may be
configured to operate within a cloud-computing-based envi-
ronment and is advantageous where acceleration of cloud
services is beneficial. For example, acceleration can be
allowed between different determined services in order to
speed up communications between the different services as
opposed to just accelerating network traffic from a server in
the cloud environment to a client’s connection point to the
network.

At a high level, the server 102 is an electronic computing
device operable to receive, transmit, process, store, or man-
age data and information associated with the EDCS 100.
According to some implementations, server 102 may also
include or be communicably coupled with an e-mail server, a
web server, a caching server, a streaming data server, a busi-
ness intelligence (BI) server, and/or other server. The follow-
ing described computer-implemented methods, computer-
readable media, computer systems, and components of the
example distributed computer system 100 provide network
traffic routing optimizations using, among other things, an
AccAD application/AccAD data (not illustrated) associated
with CFEs/SFEs, a repository application/repository data
(not illustrated) associated with a repository, and one or more
clients and servers.

In general, the server 102 is a server that stores and/or
executes one or more server applications 107 and acts as a
supplier of network services. A network service is a data
storage, manipulation, presentation, communication or other
capability which is often implemented using a client-server or
peer-to-peer architecture based on network protocols running
at the application layer of a network. Each network service is
usually provided by a server component running on one or

25

35

40

45

50

6

more computers (often a dedicated server computer offering
one or more services) and accessed using a network by client
components running on other client devices. However, in
some implementations, the described client and server com-
ponents can both be run on the same computer, sometimes
simultaneously. This dual nature sometimes requires interfac-
ing network components to switch roles as a client and/or
server.

Network services can include, for example, a domain name
system (DNS), authentication servers, an NTP server, a
DHCP server, an FTP server, search systems, streaming data
(e.g., audio/video), file storage/transmission, and the like.
The server 102 can also interact with user requests/responses
sent by clients 140 within and communicably coupled to the
illustrated EDCS 100. In some implementations, the one or
more server applications 107 represent one or more web-
based applications accessed and executed by the client 140,
CFE 150, SFE 160, and/or repository 170 using the network
130, or a user directly accessing the server 102 to perform the
programmed tasks or operations of a particular server appli-
cation 107.

The server 102 is responsible for receiving requests using
the network 130 from one or more client applications 146
associated with the client 140 of the EDCS 100 and respond-
ing to the received requests by processing the said requests in
the server application 107. In addition to requests received
from the client 140, requests may also be sent to the server
102 from internal users, external or third-parties, other auto-
mated applications, as well as any other appropriate entities,
individuals, systems, or computers, including a CFE 150, a
SFE 160, and/or a repository 170. In some implementations,
various requests can be sent directly to server 102 from a user
accessing server 102 directly.

In some implementations, any and/or all the components of
the server 102, both hardware and/or software, may interface
with each other and/or the interface 104 (described below)
using an application programming interface (API) 112 and/or
a service layer 113. The API 112 may include specifications
for routines, data structures, and object classes. The API 112
may be either computer-language independent or dependent
and refer to a complete interface, a single function, or even a
set of APIs. The service layer 113 provides software services
to the EDCS 100. The functionality of the server 102 may be
accessible for all service consumers using this service layer.
Software services, such as those provided by the service layer
113, provide reusable, defined business functionalities
through a defined interface. For example, the interface may be
software written in JAVA, C++, or other suitable language
providing data in extensible markup language (XML) format
or other suitable format.

While illustrated as an integrated component of the server
102 in the EDCS 100, alternative implementations may illus-
trate the API 112 and/or the service layer 113 as stand-alone
components in relation to other components of the EDCS
100. Moreover, any or all parts of the API 112 and/or the
service layer 113 may be implemented as child or sub-mod-
ules of another software module, enterprise application, or
hardware module without departing from the scope of this
disclosure. For example, the API 112 could be integrated into
the server application 107.

The server 102 includes an interface 104. Although illus-
trated as a single interface 104 in FIG. 1, two or more inter-
faces 104 may be used according to particular needs, desires,
or particular implementations of the EDCS 100. The interface
104 is used by the server 102 for communicating with other
systems in a distributed environment—including within the
EDCS 100—connected to the network 130; for example, the

US 9,137,162 B2

7

client 140, CFE 150, SFE 160, and/or repository 170 as well
as other systems communicably coupled to the network 130
(whether illustrated or not). Generally, the interface 104 com-
prises logic encoded in software and/or hardware in a suitable
combination and operable to communicate with the network
130. More specifically, the interface 104 may comprise soft-
ware supporting one or more communication protocols asso-
ciated with communications such that the network 130 or
interface’s hardware is operable to communicate physical
signals within and outside of the illustrated EDCS 100.

The server 102 includes a processor 105. Although illus-
trated as a single processor 105 in FIG. 1, two or more pro-
cessors may be used according to particular needs, desires, or
particular implementations of the EDCS 100. Generally, the
processor 105 executes instructions and manipulates data to
perform the operations of the server 102. Specifically, the
processor 105 executes the functionality required to provide
network traffic routing optimizations.

The server 102 also includes a memory 106 that holds data
for the server 102, client 140, and/or other components of the
EDCS 100. Although illustrated as a single memory 106 in
FIG. 1, two or more memories may be used according to
particular needs, desires, or particular implementations of the
EDCS 100. While memory 106 is illustrated as an integral
component of the server 102, in alternative implementations,
memory 106 can be external to the server 102 and/or the
EDCS 100.

The server application 107 can be considered a content
provider that can include, for example, applications and data
on a server and/or external services, business applications,
business application servers, databases, RSS feeds, document
servers, web servers, streaming servers, caching servers, or
other suitable content sources. In some implementations, a
particular server application 107 can use internal/external
server application data (not illustrated) to provide content to
the client 140 and/or other appropriate components of the
EDCS 100. The server application 107 also allows the client
140 to request, view, execute, create, edit, delete, and/or con-
sume content from server 102.

Once a particular server application 107 is launched, the
particular server application 107 can be used, for example by
aclient 140 or other component ofthe EDCS 100 (e.g., a CFE
150, a SFE 160, and/or a repository 170), to interactively
process a task, event, or other information/content associated
with the server 102. In some implementations, the server
application 107 may be a network-based, web-based, and/or
other suitable application consistent with this disclosure. For
example, a particular server application 107 may receive a
search request from a client 140 browser. The server applica-
tion 107 can initiate a search process based on the received
search request and send received search results back to the
requesting client 140.

In some implementations, a particular server application
107 may operate in response to and in connection with at least
one request received from other server applications 107, other
components (e.g., software and/or hardware modules) asso-
ciated with another server 102, and/or other components of
the EDCS 100 (whether illustrated or not). In some imple-
mentations, the server application 107 can be accessed and
executed in a cloud-based computing environment using the
network 130. In some implementations, a portion of a par-
ticular server application 107 may be a web service associated
with the server application 107 that is remotely called, while
another portion of the server application 107 may be an inter-
face object or agent bundled for processing at a remote client
140. Moreover, any or all of a particular server application
107 may be a child or sub-module of another software module

20

40

45

8

or enterprise application (not illustrated) without departing
from the scope of this disclosure. Still further, portions of the
particular server application 107 may be executed or accessed
by a user working directly at the server 102, as well as
remotely at a corresponding client 140. In some implemen-
tations, the server 102 or any suitable component of server
102 or the EDCS 100 can execute the server application 107.

The client 140 (e.g., 140a-140¢) may be any computing
device operable to connect to or communicate with at least the
server 102 using the network 130 and that acts as a consumer
of network services. In general, the client 140 comprises an
electronic computing device operable to receive, transmit,
process, and store any appropriate data associated with the
EDCS 100, for example, the server application 107, GUIs,
utilities/tools, and the like. More particularly, among other
things, the client 140 can generate content supply requests
and content governance administrative requests with respect
to the server 102. The client typically includes a processor
144, a client application 146, a memory 148, and/or an inter-
face 149.

The client application 146 is any type of application that
allows the client 140 to navigate to/from, request, view, cre-
ate, edit, delete, administer, and/or manipulate content asso-
ciated with the server 102. In some implementations, the
client application 146 can be and/or include a web browser. In
some implementations, the client application 146 can use
parameters, metadata, and other information received at
launch to access a particular set of data from the server 102
and/or other components of the EDCS 100. Once a particular
client application 146 is launched, a user may interactively
process atask, event, or other information associated with the
server 102 and/or other components of the EDCS 100. For
example, the client application 146 can generate and transmit
a search request to the server 102. Further, although illus-
trated as a single client application 146, the client application
146 may be implemented as multiple client applications in the
client 140.

The interface 149 is used by the client 140 for communi-
cating with other computing systems in a distributed comput-
ing system environment, including within the EDCS 100,
using network 130. For example, the client 140 uses the
interface to communicate with a server 102, a CFE 150, a SFE
160, as well as other systems (not illustrated) that can be
communicably coupled to the network 130. The interface 149
may be consistent with the above-described interface 104 of
the server 102 or other interfaces within the EDCS 100. The
processor 144 may be consistent with the above-described
processor 105 of the server 102 or other processors within the
EDCS 100. Specifically, the processor 144 executes instruc-
tions and manipulates data to perform the operations of the
client 140, including the functionality required to send
requests to the server 102 and to receive and process
responses from the server 102.

The memory 148 typically stores objects and/or data asso-
ciated with the purposes of the client 140 but may also be
consistent with the above-described memory 106 of the
server 102 or other memories within the EDCS 100 and be
used to store data similar to that stored in the other memories
of the EDCS 100 for purposes such as backup, caching, and
the like.

Further, the illustrated client 140 includes a GUI 142 that
interfaces with at least a portion of the EDCS 100 for any
suitable purpose. For example, the GUI 142 may be used to
view data associated with the client 140, the server 102, or any
other component of the EDCS 100. In particular, In some
implementations, the client application 146 may actas a GUI
interface for the server application 107, other components of

US 9,137,162 B2

9

server 102, and/or other components of the EDCS 100
(whether illustrated or not) including the CFE 150, SFE 160,
and/or repository 170. For example, the GUI 142 can be used,
in some implementations, to configure or maintain an AccAD
network, configure/maintain a repository 170, and/or config-
ure/maintain a CFE 150/SFE 160.

There may be any number of clients 140 associated with, or
external to, the EDCS 100. For example, while the illustrated
EDCS 100 includes one client 140 communicably coupled to
the server 102 using network 130, alternative implementa-
tions of the EDCS 100 may include any number of clients 140
suitable to the purposes of the EDCS 100. Additionally, there
may also be one or more additional clients 140 external to the
illustrated portion of the EDCS 100 that are capable of inter-
acting with the EDCS 100 using the network 130. Further, the
term “client” and “user” may be used interchangeably as
appropriate without departing from the scope of this disclo-
sure. Moreover, while the client 140 is described in terms of
being used by a single user, this disclosure contemplates that
many users may use one computer, or that one user may use
multiple computers.

The illustrated client 140 (example configurations illus-
trated as 140a-140c¢) is intended to encompass any computing
device such as a desktop computer, laptop/notebook com-
puter, wireless data port, smart phone, personal data assistant
(PDA), tablet computing device, one or more processors
within these devices, or any other suitable processing device.
For example, the client 140 may comprise a computer that
includes an input device, such as a keypad, touch screen, or
other device that can accept user information, and an output
device that conveys information associated with the operation
of'the server 102 or the client 140 itself, including digital data,
visual and/or audio information, or a GUI 142, as illustrated
specifically with respect to the client 140a.

The client front end (CFE) 150 is an appliance (e.g., a
computer) which can act both as aclient (e.g., aclient 140), by
consuming network services from SFEs 160, and as a server,
by providing clients with the network services it consumes.
The CFE 150 acts as a type of a reflector of the network
services consumed and is typically placed geographically
close to a particular client 140 and connected to the client 140
over network 130. In other words, the client 140 would
receive the same network service delivery both when access-
ing the delivered services through the CFE 150 and when
directly accessing the server 102 providing the network ser-
vice (apart from performance differences). The SFE-CFE
structure passes the network service from the server 102 to
client 140, such that they “reflect” the server 102 to the client
140 through them (e.g., server 102—SFE 160 (the “server-
side”)—=CFE 150—client 140 (the client-side)), in such a
manner that the client 140 sees the same thing when either
communicating with the server 102 directly or when access-
ing the server 102 through the CFE 150. In some implemen-
tations, a single CFE 150 can consume network services from
several SFEs 160. In some implementations, the CFE 150 can
be similar in structure (software and/or hardware) to the
server 102 and/or client 140, with more or less software
and/or hardware components according to particular needs,
desires, or particular implementations of the EDCS 100. As
described above, a CFE 150 is considered an AccAD node
depending on context. In some implementations, the CFE 150
can be re-tasked for various reasons to actas a SFE 160 and/or
a repository. For example, a CFE 150 may switch to act as a
SFE 160 when it is required to deliver network services which
are provided from a serverl (geographically proximate to a
clientl) to a client2 (geographically proximate to a server2)
through a CFE 150 proximate to server2. In this example, the

20

25

40

45

10

latter CFE 150 could be called on to interact with either
client2 and/or server2 and could take on a different (or a dual)
role.

The server front end (SFE) 160 is an appliance (e.g., a
computer) which can act both as a client (e.g., a client 140),
consuming network services from servers (e.g., a server 102),
and on the other hand as a server, providing CFEs 150 with the
network services it consumes. The SFE 160 acts as a type of
a reflector (similar to the discussion above related to the CFE
150) ofthe network services consumed and is typically placed
geographically close to one or more servers 102 and con-
nected to the one or more servers 102 over network 130. In the
case of the SFE 160, the SFE 160 transparently passes a
network service from the server 102 to a CFE 150. By “trans-
parent,” it is to be understood that communications between
the SFE 160 and the CFE 150 can, in some implementations,
be uniquely altered (e.g., compressed, cached, accelerated
and so on). However, the CFE 150 does reflect network ser-
vices from the server 102 to the client 140 through SFE 160
and not from the SFE 160, as the client 140 receives network
services through the AccAD network as-if the client 140
would have directly communicated with the server 102. In
some implementations, the SFE 160 can be similar in struc-
ture (software and/or hardware) to the server 102 and/or client
140, with more or less software and/or hardware components
according to particular needs, desires, or particular imple-
mentations of the EDCS 100. As described above, a SFE 160
is considered an AccAD node depending on context. In some
implementations, the SFE 160 can be re-tasked for various
reasons to act as a CFE 150 and/or a repository. For example,
a SFE 160 may switch to act as a CFE 150 when it is required
to deliver network services which are provided from a serverl
(geographically proximate to a clientl) to a client2 (geo-
graphically proximate to a server2) through a SFE 160 proxi-
mate to serverl. In this example, the latter SFE 160 could be
called on to interact with either clientl and/or serverl and
could take on a different (or a dual) role.

In some implementations, a CFE 150/SFE 160 can switch
roles and operate as a SFE 160/CFE 150, respectively. See
FIG. 2B for an example.

The repository 170 provides functionality to consolidate
configurations of delivered network services and to provide
SFEs 160 and/or CFEs 150 with repository data (not illus-
trated) about network services (e.g., types, resource usage,
requirements, etc.), the network itself, clients 140, and/or
servers 102. In some implementations, the repository 170
contains a repository application (not illustrated) capable of
providing repository functionality and to also act as a host for
installable resources (also repository data), such as upgrade
resources (e.g. scripts, binaries, RED HAT PACKAGE
MANAGER files (RPMs), MICROSOFT installer files
(MSIs), installation packages, etc.). In some implementa-
tions, the repository application can use/provide live network
datato dynamically monitor the AccAD network (or interface
with other repository applications and/or AccAD applica-
tions to collectively monitor the AccAD network) in order to
adjust provided network services between CFEs 150 and/or
SFEs 160. In some implementations, the live network data
can be collected in and/or used by each AccAD node. The
AccAD nodes can also transmit the live network data among
themselves as well as to and from the repository 170 and any
other suitable component of the EDCS 100.

In some implementations, the CFE 150, SFE 160, and/or
repository 170 can include one or more instances of an
AccAD application and/or AccAD data (neither illustrated).
The AccAD application can be used to configure/maintain an
AccAD network, neighborhood, and/or topology. For

US 9,137,162 B2

11

example, the AccAD application can provide functionality
accessible by a client 140 to automatically discover/manually
configure of AccAD links in a particular AccAD network.

In some implementations, the AccAD application can use
live network data to dynamically monitor the AccAD network
(or interface with other AccAD applications and/or a reposi-
tory—described below—to collectively monitor the AccAD
network) in order to adjust provided network services
between CFEs 150, SFEs 160, and/or repository 170. For
example, the AccAD application can redirect network traffic
based on a determination that a more efficient network path is
not available, a network connection is no longer available,
and the like.

The AccAD application can also execute within an AccAD
node to support operation of AccAD functionality, including
determining the operating role of an AccAD node (e.g. as a
CFE 150, SFE 160, and/or a repository 170). For example, the
AccAD application can dynamically determine that a SFE
160 should be operating as a CFE 150 and request that the
SFE 160 modify its role in the AccAD network. In another
example, in some implementations, the AccAD node can act
both as a CFE 150 and as a SFE 160 at the same time depend-
ing on the specific connection’s requirement.

In some implementations, the AccAD application can gen-
erate one or more service delivery configurations based on a
particular content type being routed through the network, the
source and/or destination of the content, and other param-
eters, including specific fine-tunings of a delivery’s configu-
rations suited according to the particular content and/or other
network parameters. Specific content types and/or connec-
tions and/or specific protocols can also be manually/auto-
matically defined by the AccAD application to be ignored/not
accelerated. For example, search requests can be specified to
not be accelerated by the AccAD network. Service delivery
configurations may include adjusting data quality, accelera-
tion levels, and the like to preserve data integrity/quality. In
some implementations, the AccAD application can provide a
user-accessible GUI to generate, remove, review, edit, pro-
pose, and/or select service delivery configurations/modifica-
tions.

In some implementations, the AccAD application can pro-
vide functionality to suggest AccAD network modifications,
including providing a user-accessible GUI to generate,
remove, review, edit, propose, and/or select modifications to
the AccAD network. For example, a user can be notified using
a GUI that arecommendation has been made to add a SFE 160
to permit more efficient access to one or more servers. The
user can choose to approve/deny the suggestion, edit the
suggestion, review additional details regarding the sugges-
tion (projected cost, performance/cost improvements, etc.),
forward the suggestion to someone else for review, and the
like.

In some implementations, routes for traffic (including spe-
cific types of traffic) can be prioritized within the AccAD
network by the AccAD application. Prioritization can be
based upon administrator requirements, dynamic determina-
tions based on network status, AccAD network usage, and the
like. Traffic routing can help save costs and/or improve the
performance of network topologies in that, for particular con-
tent types, a more limited set and/or particular set of neces-
sary resources can be specified which can save usage costs
and improve performance. For example, for low priority traf-
fic, particular low-cost routes can be prioritized/specified for
that type of traffic to save money. As another example, data
intensive traffic (video streaming), can be prioritized through
network routes that are just sufficient performance-wise to
meet demand without wasting additional cost for unnecessary

5

10

15

20

25

30

35

40

45

50

55

60

12

performance. In some implementations, the AccAD applica-
tion can provide a user-accessible GUI to generate, remove,
review, edit, propose, and/or select route prioritizations/rout-
ing.

In some implementations, the AccAD application can be
used to determine a “best” topology (according to cost/per-
formance requirements). The determination can be made for
comparison with other options and/or a real AccAD network
configuration before any actual modifications are made in the
AccAD network’s topology (e.g., in a dynamic “sandbox™/
simulation type of environment). The dynamic simulation
can leverage actual AccAD network parameters in current
states (e.g., cost, bandwidth status, number of users, etc.). An
administrator can vary parameters, including the MC thresh-
old to dynamically build/change virtual neighborhoods to
analyze effects on overall AccAD network performance and,
if desired, change the topology of an AccAD network on-the-
fly. In some implementations, the AccAD application can
provide a user-accessible GUI to generate, remove, review,
edit, propose, and/or select topologies.

AccAD datacanbeused by an AccAD application, AccAD
node, and/or appropriate component of the EDCS 100 and
can include network topologies/configurations, network
identifications, geographic locations, AccAD virtual neigh-
borhood configurations (described below), MC threshold
data, link cost calculations, status data, configuration data,
network/AccAD link (described below) data, customer infor-
mation, security information, user profiles, network timing
data (e.g., hops, round trip times, etc.), service information,
and the like. The AccAD data can be generated, stored, and/or
converted from/into any suitable format or form, for example,
binary, text, numerical, a database file, a flat file, an XML file,
or the like. In some implementations, the AccAD data can be
accessed by any suitable component of the EDCS 100, for
example, the client application 146. In some implementa-
tions, the AccAD data can be updated regularly or at a par-
ticular time based on underlying processes and/or data/con-
tent objects. The AccAD data can be an integral component of
the memory 106. In alternative implementations, the AccAD
data can be wholly or partially external to the memory 106
(e.g., stored in memory 148 or other available memory of the
EDCS 100 such as memories of the CFE 150, SFE 160, and/or
repository 170) and/or be separated into both external AccAD
data and internal AccAD data as long as these are accessible
using network 130. In other implementations, the AccAD
data can be shared among multiple AccAD nodes.

FIGS. 2A & 2B are block diagrams 200a & 2005 illustrat-
ing network/AccAD network traffic delivery, respectively,
according to an implementation. FIG. 2A illustrates a basic
network topology according to an implementation. The basic
network topology includes two servers 102 (serverl and
server2), two clients 140 (client1 and client2), CFE 150, and
SFE 160. As shown, clientl 140 can consume a network
service by accessing CFE 150 in the network, which in turn
accesses SFE 160 to consume the network service, which in
turn access, for example, serverl 102 to supply the network
service. The network service is passed back through the net-
work from serverl 102 to the requesting client(s) 140. Note
that in this illustration, a direct network connection 202 also
exists between the clientl 140 and serverl 102. In this
example, it could be that Costl (the direct connection)>
(Cost2+some MC threshold) as described above. In this case,
the connection is accelerated through the AccAD network
including the CFE 150 and the SFE 160. In some implemen-
tations, both clients can simultaneously access the CFE 150
(and vice versa) and the SFE 160 can simultaneously access

US 9,137,162 B2

13

both servers (and vice versa). In some implementations, a
CFE 150 can access multiple SFE’s 160 simultaneously.

Turning now to FIG. 2B, FIG. 2B illustrates a reversed
basic network topology network delivery configuration
according to an implementation. Here, serverl 102 of FIG.
2A has switched roles to act as a client 140, while the clientl
140 has switched roles to act as a server 102. Note that the
CFE 150 and the SFE 160 have not switched formal named
roles in this example but are still able to provide appropriate
services for the current client/server configuration (even
operating as both a CFE 150 and a SFE 160). In some imple-
mentations, the CFE 150 and/or the SFE 160 can switch
formal named roles.

FIG. 3 is a block diagram 300 illustrating redirecting
AccAD network traffic to a more optimal route according to
an implementation. As illustrated, the cost between CFE A
150 and SFE 150 is 3. The cost between CFE B 150 and SFE
160 is 7. Here, a request for service X from client 140 to CFE
B 150 is redirected by CFE B 150 to CFE A 150 to take
advantage of the reduced cost between CFE A 150 and SFE
150.

At least two redirection methods are envisioned:

1. Ongoing intervention—the AccAD node forwards the
requestor’s request to the target node (e.g., server 102) to
which it redirects and then forwards the response from the
target node to the requestor. In FIG. 3, CFE B 150 would
receive a request for service X from the client 140 and for-
ward it to CFE A 150 and then receive a response from CFE
A 150 to forward back to the client 140. A benefit of the
ongoing intervention approach is to allow the redirecting
AccAD node to analyze/manipulate/report (among other
things) data prior to redirection and/or in the process of it. In
some implementations, CFE B 150 could seamlessly/trans-
parently (from the perspective of the client) handle forward-
ing of the service request to the SFE 160 if, for example, the
route from the CFE A 150 to server 102 has failed or the route
from CFE B 150 to CFE A 150 has failed. This method
provides a built-in backup functionality for the delivery of the
service from the server to the client through the AccAD
network, transparent to the client, which increases the avail-
ability of the delivered service to the client by increasing the
amount of available routes through which the service may be
delivered to the client, while CFE B 150 proxies these routes
for the client, and it does so in a manner which may even be
relatively less costly and more efficient.

2. Single intervention—the AccAD node receives a request
from the requestor and instructs the requestor to go directly to
a desired target node without forwarding the client’s request
and/or receiving a response to forward back to the client. In
FIG. 3, CFE B 150 would receive a request for service X from
the client 140 and in response would instruct client 140 to
request service X from CFE A 150 directly instead of request-
ing it from and/or through CFE B 150. The benefit of the
single intervention approach (apart from the initial commu-
nication between the client 140 and the AccAD network) is to
save network hops and reduce unnecessary load on CFE B
150. The type of redirection method is, in some implementa-
tions, user/administrator configurable and/or automatically/
dynamically configured. In some implementations a default
redirection method can be set and be overridden if desired
and/or based on various network or other parameters. In some
implementations, each AccAD node can choose the redirec-
tion method suitable to its current situation, role, resources
usage, etc. and/or perform different redirection methods
simultaneously based on request types, connections, etc.

In some implementations, each AccAD node can publish
the cost from it to each of its neighbors, and in conjunction

10

15

20

25

30

35

40

45

50

55

60

65

14

with the regular routing tables, each AccAD node would be
able to calculate the best route for it considering the costs of
the different available paths (e.g. by using Dijkstra’s algo-
rithm or other suitable algorithm for shortest paths calcula-
tion). Furthermore, each AccAD node would “know”
whether its communication with another AccAD node in the
network should be accelerated by AccAD or not, and thus
would be able to request this service from AccAD or go
directly to the wanted destination node respectively. Further,
each AccAD node can determine whether it would be more
advantageous for traffic to be redirected to another AccAD
node or directly to another network node/AccAD node. Here,
CFE B 150 redirected the request for service X to CFE A 150
due to a determination it would be optimal for CFE A 150 to
receive the request for service X and to accelerate it through
the AccAD network to SFE 160.

FIG. 4 is a block diagram 400 illustrating, according to an
implementation, a SFE redirecting network traffic directly to
an associated server as its network connection to the associ-
ated server is unavailable. Here, as the connection (usual
cost=1) between SFE 160 and server 102 is down, SFE 160
redirects network traffic using the ongoing intervention
method described in FIG. 3 (cost=2) to the server 102 to
bypass the unavailable connection. It must be noted that while
the connection from the SFE 160 to the server 102 may be
down, the server may still be available (e.g., the SFE 160
failed to create a new socket to communicate with the server
102) while the SFE 160 may be able to forward traffic in lieu
of opening a socket first (which might add an unnecessary
cost increase) in order to route the traffic through the SFE 160.
In the case where the server is down, the SFE 160 may try to
redirect traffic to the server but will fail to do so since the
server is down, and thus it would then report the failure back
up through the network chain (e.g., the CFE 150 might try to
redirect as well to the server 102 before reporting an error to
the client 140). While in the example the total cost changes
from a usual cost=11 to a cost=12, an infinite cost determi-
nation due to a down connection between the SFE 160 and
server 102 results in a decision by the SFE 160 to redirect the
network traffic even with a slight cost increase. In another
implementation, the SFE 160 can instruct the CFE 150 and/or
client 140 to perform a single intervention redirection method
as described in FIG. 3.

FIG. 5 is a block diagram 500 illustrating, according to an
implementation, a client front end (CFE) redirecting AccAD
network traffic from a client directly to a server. Here, a
determined Cost2=3 for network traffic to traverse client
140—CFE 150—SFE 160—server 102 has been determined
to be more than the Cost1=2 of a direct network connection
502 between the client 140 and the server 102. It should be
noted that, in this case, even if the CFE 150 performs an
ongoing intervention redirection, then a total cost of (1
(client—=CFE)+2 (CFE—=server))=3 is still equal to the cost
of'going through the AccAD path, and thus, in such a case, the
client 140 would also be redirected directly to the server 102
(without a need to even consider a MC threshold). This situ-
ation could have occurred due to changing network connec-
tion conditions along the Cost2 path or related to the Costl
direct connection. Here, the CFE 150 redirects the network
traffic directly to the server 102.

FIG. 6A is a block diagram 600 illustrating an example
AccAD topology according to an implementation. As illus-
trated, there are five servers (serverl-server5), seven AccAD
nodes (nodel-node7), and five clients (client1-client5). Serv-
ers can supply network services to one or more AccAD nodes
(e.g., server] has a connection with nodel (e.g., a SFE) while
server2 has connections with nodel and node4 (e.g., a SFE)).

US 9,137,162 B2

15

Likewise AccAD nodes can connect to one or more AccAD
nodes (e.g., nodel has a connection only with node4 while
node4 has connections with node2 (e.g., a CFE 150, SFE 160,
and/or repository 170), node5 (e.g., a CFE), and node6 (e.g.,
a SFE)). The AccAD nodes can also deliver network services
to one or more clients (e.g., node3 is connected to clientl
while nodeS5 is connected to client2 and client3). The arrows
are directional and represent an ability to pass the requested
network service in the arrow’s direction. A possible initial
configuration of each AccAD node could be as follows:
nodel, noded, and node6 configured as SFEs 160 as they are
connected to servers; node3, node5, and node7 configured as
CFEs 150 as they are connected to clients; node2, free to be
configured as a CFE 150 and/or a SFE 160 and/or a repository
170 depending upon connections in the illustrated AccAD
network.

FIG. 6B is a block diagram 6005 illustrating an example
AccAD topology split into virtual neighborhoods according
to an implementation. Some components of FIG. 6B are
labeled similarly to FIG. 6A. In FIG. 6B, the use of the
above-described MC threshold creates two virtual neighbor-
hoods (VN1 and VN2) in which delivering services using the
AccAD network inside a delineated virtual neighborhood
would actually harm the total performance of the network
because (Costl)<=(Cost2+some MC threshold) while
AccAD acceleration of network services between the various
virtual neighborhoods would improve the performance of the
network. Although illustrated as divided into two virtual net-
works, the network can be divided into more than two virtual
networks. The use of the MC threshold forces searches to
focus on the longest (costliest) paths in the network and only
allows them to be accelerated instead of arbitrarily accelerat-
ing a network connection between any two points in a net-
work simply upon a cost value calculation. Adjustment of the
MC thresholds permits general dynamic selective accelera-
tion of data through the AccAD network and the creation of
virtual networks.

In the example presented by FIG. 6B, any of client1-client5
has the ability to access any of serverl-server5 directly with-
out going through the AccAD network (not illustrated). Note
that available direct connections (as well as lost or newly
opened connections) may affect the structure of different
virtual neighborhoods and may drastically affect routing
decisions based on the determined costs and MC threshold.
Given each pair of client-server, a decision is made according
to the costs and the MC threshold whether it is less costly to
access the server directly or go through (or partially through)
the AccAD network.

To further explore the use of virtual neighborhoods, it can
be seen that the “bridges” between VN1 and VN2 are the
connections between node4-node5 and node6-node7. An
AccAD node may either: 1) forward incoming delivery traffic
as-is, on to the next node, in the direction of the requestor of
the service, or 2) accelerate the transmission of this data. As
stated in FIG. 6A, the arrows are directional and represent an
ability to pass the requested network service in the arrow’s
direction.

It is not mandatory that data which flows through an
AccAD node is accelerated. If the data is accelerated, then the
cost of passing it on, accelerated, to the next node, is neces-
sarily lower than the cost of simply forwarding this data on
as-is. This is a basic assumption for AccAD—if data can be
passed on as-is without accelerating it such that it would be
“less costly” than passing it on as accelerated, then don’t
accelerate.

In an example in which client5 would like to receive a
delivery of a network service being provided by serverl, as

20

30

40

45

65

16

can be seen in FIG. 6B, the path for such a delivery would be:
serverl—nodel—node4—node6—node7—client5. Since
serverl and nodel, noded, and node6 are in the same virtual
network, then the total cost of passing un-accelerated data
from serverl to node6 is lower than the MC threshold, and
thus these communications are not accelerated, but rather
passed as-is through these nodes, even though accelerating
them may reduce the total cost of passing the data from
serverl to node6. This acceleration gating effect is at least one
effect of the MC threshold. Similarly, the traffic between
node7 and client5 is not accelerated, specifically in this case
since the client5, at its access point (in this case—node7),
should receive the original data sent from the server (uncom-
pressed, without being aware of any accelerations etc.). But
even ifanother AccAD node (e.g., node8) was between node7
and the client5, the communications between node7 and
node8 would not be accelerated as both of them are in the
same virtual network. Yet, since node6 and node7 are in
different virtual neighborhoods, then the communications
between them would be accelerated.

An example of costs which would create such a scenario
may be:

The total cost from serverl to node6 as described=7

The cost of the link between node7 and the client5=3

(though this only affects whether clientS would access
serverl directly or through the AccAD network)

The cost between node6 and node7=10

The MC threshold=10.

These costs and the provided MC threshold cause serverl and
nodel, noded, and node6 to all be considered in the same
virtual neighborhood, and likewise cause node7 and client5 to
be in the same virtual neighborhood. The two virtual neigh-
borhoods, however, are disjoint sets, as adding the cost of the
link between node6 and node7 to each of them would mean
passing the MC threshold of 10, thus acceleration only occurs
between node6 and node?7.

In another implementation, once a client-server pair
requires an acceleration in any hop in the path between them
inside the AccAD network, then any and/or all of the hops
between each two AccAD nodes in the network path can be
accelerated. This can be configured regardless of the MC
threshold, even if some of the pairs of AccAD nodes are in the
same virtual neighborhood. While typically network paths
within the same virtual network are not accelerated, in some
instances, some network paths (e.g., the longest paths) can be
completely accelerated. Note that it may mean accelerating
the communication between one client-server pair in a given
network path, but not accelerating the communication
between a different client-server pair which goes through the
same network path inside the AccAD network.

In order to calculate costs in a “smart” way, for example,
each AccAD node can publish the cost from it to each of its
neighboring AccAD nodes (and associated client/servers)
and in conjunction with available routing tables (e.g., part of
AccAD data and/or repository data), each AccAD node
would be able to calculate the best route for it considering the
costs of the different available paths (e.g. by using Dijkstra’s
algorithm for shortest paths, where, for example, each net-
work hop’s weight (or other appropriate value/measurement)
is its “cost”). Each AccAD node would then “know” whether
its communication with another node in the network should
be accelerated by AccAD functionality or not. Each AccAD
node can then request accelaration from an AccAD applica-
tion or to directly contact a desired destination network node
(e.g., client/server or AccAD node). Between particular
AccAD appliances, optimal routes for network traffic are
searched for and incoming traffice redirected, by need, to

US 9,137,162 B2

17

other AccAD appliaances if it would improve the perfor-
mance of the network. Knowledge whether to accelerate with
AccAD functionality or to form a direct connection with a
particular network node helps to optimize routing in the net-
work and can reduce usage costs of network service delivery
systems such as an AccAD node, especially when paying per
appliance.

In some implementations, network structure can be moni-
tored, for example by analyzing traffic which passes through
the network, by communication, and/or spreading of relevant
data by various AccAD appliances in order to improve the
view of the overall network with respect to each such appli-
ance, etc. In this way, the network structure can be analyzed
and network neighbors identified. The monitoring/analysis
can, in some implementations, provide a constantly available
live view of the network’s structure, which would allow opti-
mal automatic decisions. As a result, each AccAD node would
“know” which network traffic content should it accelerated
and which not, and would “know” the best method of deliv-
ering this content across the network. Network and other
configurations can be automatically determined and applied
based on the monitoring functionality. In some implementa-
tions, the network and other configurations can be manually
performed, for example by a system administrator who can
set predefined configurations for sole use or configurations in
conjunction with further automatic configurations.

In some implementations, one or more service delivery
configurations can be automatically generated based on a
particular content type being routed through the network, the
source and/or destination of the content, and other param-
eters, including specific fine-tunings of a delivery’s configu-
rations suited according to the particular content and/or other
network parameters. Services delivery configurations are rel-
evant for any type of content which is routed, and for which
routings can be adjusted. Furthermore, specific content types
and/or connections and/or specific protocols can be manu-
ally/automatically defined to be ignored/not accelerated. For
example, search requests can be specified to not be acceler-
ated by the AccAD network.

In some implementations, the AccAD network can suggest
how to modify the AccAD network topology in order to
achieve better overall performance. Performance can be mea-
sured by parameters such as, but not limited to, costs, free
bandwidth, throughput, etc. For example, modification sug-
gestions could be to add another SFE 160 in order to improve
reachability to a particular server(s), or removing a CFE 150
which sees little use and is wasting avaialble resources,
money, etc. In some implementations, the AccAD application
can provide functionality to suggest AccAD network modi-
fications, including providing a user-accessible GUI to gen-
erate, remove, review, edit, propose, and/or select modifica-
tions to the AccAD network. Modification suggestions can
help users save costs and/or improve the performance of
network topologies by telling providing information as to
where accelerator nodes can be added/removed in order to
improve the performance/reduce costs.

If an AccAD acceleration through the AccAD network/
virtual neighborhoods might harm/endanger data integrity, an
administrator can also choose to decrease an acceleration
amount and/or modify data quality preferences—such as the
encryption of the data (on/off), caching data (on/off/limited),
using a dictionary data structure, etc. For example, streaming
video data at a particular high quality might be adversely
affected if accelerated through a particular AccAD network
path, although the cost may be lower. The administrator can
reduce the required video quality to a level acceptable to users
but not affected by the acceleration.

25

30

40

45

18

The best determined topology (according to cost/perfor-
mance requirements) can also be calculated for comparison
with other options and/or a real AccAD network configura-
tion before any actual modifications are made in the net-
work’s topology (e.g., in a dynamic “sandbox”/simulation
type of environment). Before any actual modifications are
made in the AccAD network’s topology, the dynamic simu-
lation can leverage actual Acc AD network parameters in cur-
rent states (e.g., cost, bandwidth status, number of users, etc.).
An administrator can vary parameters, including the MC
threshold to dynamically build/change virtual neighborhoods
to analyze effects on overall AccAD network performance
and, if desired, change the topology of an AccAD network
on-the-fly.

In some implementations, routes for traffic (including spe-
cific types of traffic) can be prioritized within the AccAD
network. Prioritization can be based upon administrator
requirements, dynamic determinations based on network sta-
tus, AccAD network usage, and the like. Traffic routing can
help save costs and/or improve the performance of network
topologies in that for particualar content types, a more limited
set and/or particular set of necessary resources can be speci-
fied which can save usage costs and improve performance.
For example, for low priority traffic, particular high-cost
routes (slower) can be prioritized/specified for that type of
traffic to save money (e.g., by not accelerating the route). As
another example, data intensive traffic (video streaming), can
be priortized through network routes that are just sufficient
performance-wise to meet demand without wasting addi-
tional cost for unnecessary performance.

FIG. 7 is a block diagram 700 illustrating AccAD nodes
shared between multiple virtual neighborhoods according to
an implementation. As illustrated, AccAD nodel (nodel) and
node2 are part of virtual neighborhood 1, node2 and node3
are part of virtual neighborhood 2, and node3 and node4 are
part of virtual neighborhood 3. Note that while network traffic
could be accelerated across the AccAD network defined by
nodel-noded4, it might be less costly to traverse from client
140—nodel—node3—noded. In this example, network traf-
fic would enter the AccAD network, but nodel would then
determine that it would be less costly to communication the
traffic directly with node3 of virtal neighborhood 2/3 and for
the traffic to be accelerated through virtual neighborhood 2/3
(node3—node4). Note that since nodel and node3 are in
different virtual neighborhoods, the communications
between them would also be accelerated. This is because if
the cost from nodel to node3 was less than the MC threshold,
then nodel and node3 would have been in the same virtual
neighborhood. Another example could be that network traffic
could leave server 102 and be received by noded. Noded
could then transmit the traffic to node3 in virtual neighbor-
hoods 3/2 and node3 could then determine that it would be
less costly to transmit the traffic directly to nodel for trans-
mission to the client 140. Various other combinations of this
example should be apparent to those of skill in the art.

FIG. 8 is a flow chart illustrating a method for providing
network traffic routing optimizations according to an imple-
mentation. For clarity of presentation, the description that
follows generally describes method 800 in the context of
FIGS.1,2A & 2B, 3,4, 5, 6A & 6B, and 7. However, it will
be understood that method 800 may be performed, for
example, by any other suitable system, environment, soft-
ware, and hardware, or a combination of systems, environ-
ments, software, and hardware as appropriate. In some imple-
mentations, various steps of method 800 can be run in
parallel, in combination, in loops, or in any order.

US 9,137,162 B2

19

At 802, a direct connection cost is calculated for network
traffic between two points in a network, the network including
one or more nodes of an accelerated application delivery
(AccAD) network. In some implementations, the connection
cost can include consideration of at least one of bandwidth,
latency, a network hop count, a number of network links
between the two points, CPU usage, memory usage, disk
space usage, a quality-of-service (QoS) value, a round trip
time (RTT) value, a network congestion value, an amount of
network traffic, a number of network connections, network
connection interval length, a traffic type, preference tables, or
physical destination. In some implementations, the AccAD
network is divided into at least two virtual neighborhoods. In
some implementations, the network traffic between AccAD
network nodes in a virtual neighborhood is not accelerated. In
some implementations, the network traffic between virtual
neighborhoods is accelerated. In some implementations, once
an acceleration of another network link between any two
AccAD network nodes is required, at least one network link
between the AccAD network nodes is accelerated. In some
implementations, the acceleration of any network link
between the AccAD network nodes is performed regardless
of the minimum cost threshold value and/or whether the
AccAD network nodes are in the same virtual neighborhood
or not. From 802, method 800 proceeds to 804.

At 804, an AccAD connection cost is calculated for the
network traffic between the two points in the network using at
least one node of the AccAD network. From 804, method 800
proceeds to 806.

At 806, the calculated direct connection cost and the
AccAD connection cost are compared. From 806, method
800 proceeds to 808.

At 808, a determination is made whether the direct con-
nection cost is greater than the sum of the AccAD connection
cost and a minimum cost threshold value. If the direct con-
nection cost is greater than the sum of the AccAD connection
cost and a minimum cost threshold value, method 800 pro-
ceeds to 810. If the direct connection cost is less than or equal
to the sum of the AccAD connection cost and a minimum cost
threshold value, method 800 proceeds to 812.

At 810, the network traffic is routed between the two points
in the network through the at least one node of the AccAD
network. From 810, method 800 stops.

At 812, the network traffic is routed directly between the
two network points. From 812, method 800 stops.

Implementations of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, in tangibly-embodied computer
software or firmware, in computer hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Implementations of the subject matter described in this speci-
fication can be implemented as one or more computer pro-
grams, i.e., one or more modules of computer program
instructions encoded on a tangible, non-transitory computer-
storage medium for execution by, or to control the operation
of, data processing apparatus. Alternatively or in addition, the
program instructions can be encoded on an artificially-gen-
erated propagated signal, e.g., a machine-generated electri-
cal, optical, or electromagnetic signal that is generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus. The
computer-storage medium can be a machine-readable storage
device, a machine-readable storage substrate, a random or
serial access memory device, or a combination of one or more
of them.

20

30

40

45

55

20

The term “data processing apparatus™ refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example, a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be or
further include special purpose logic circuitry, e.g., a central
processing unit (CPU), a FPGA (field programmable gate
array), or an ASIC (application-specific integrated circuit). In
some implementations, the data processing apparatus and/or
special purpose logic circuitry may be hardware-based and/or
software-based. The apparatus can optionally include code
that creates an execution environment for computer pro-
grams, e.g., code that constitutes processor firmware, a pro-
tocol stack, a database management system, an operating
system, or a combination of one or more of them. The present
disclosure contemplates the use of data processing appara-
tuses with or without conventional operating systems, for
example LINUX, UNIX, WINDOWS, MAC OS,
ANDROID, IOS or any other suitable conventional operating
system.

A computer program, which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code, can be written in
any form of programming language, including compiled or
interpreted languages, or declarative or procedural lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored
in a markup language document, in a single file dedicated to
the program in question, or in multiple coordinated files, e.g.,
files that store one or more modules, sub-programs, or por-
tions of code. A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network. While portions
of'the programs illustrated in the various figures are shown as
individual modules that implement the various features and
functionality through various objects, methods, or other pro-
cesses, the programs may instead include a number of sub-
modules, third-party services, components, libraries, and
such, as appropriate. Conversely, the features and function-
ality of various components can be combined into single
components as appropriate.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable com-
puters executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., a CPU, a FPGA, or an ASIC.

Computers suitable for the execution of a computer pro-
gram can be based on general or special purpose micropro-
cessors, both, or any other kind of CPU. Generally, a CPU
will receive instructions and data from a read-only memory
(ROM) or a random access memory (RAM) or both. The
essential elements of a computer are a CPU for performing or
executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to, receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a

US 9,137,162 B2

21

mobile audio or video player, a game console, a global posi-
tioning system (GPS) receiver, or a portable storage device,
e.g., a universal serial bus (USB) flash drive, to name just a
few.

Computer-readable media (transitory or non-transitory, as
appropriate) suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., erasable programmable
read-only memory (EPROM), electrically-erasable program-
mable read-only memory (EEPROM), and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto-optical disks; and CD-ROM, DVD+/-R,
DVD-RAM, and DVD-ROM disks. The memory may store
various objects or data, including caches, classes, frame-
works, applications, backup data, jobs, web pages, web page
templates, database tables, repositories storing business and/
or dynamic information, and any other appropriate informa-
tion including any parameters, variables, algorithms, instruc-
tions, rules, constraints, or references thereto. Additionally,
the memory may include any other appropriate data, such as
logs, policies, security or access data, reporting files, as well
as others. The processor and the memory can be supple-
mented by, or incorporated in, special purpose logic circuitry.

To provide for interaction with a user, implementations of
the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube), LCD (liquid crystal display), LED
(Light Emitting Diode), or plasma monitor, for displaying
information to the user and a keyboard and a pointing device,
e.g., a mouse, trackball, or trackpad by which the user can
provide input to the computer. Input may also be provided to
the computer using a touchscreen, such as a tablet computer
surface with pressure sensitivity, a multi-touch screen using
capacitive or electric sensing, or other type of touchscreen.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech,
or tactile input. In addition, a computer can interact with a
user by sending documents to and receiving documents from
a device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

The term “graphical user interface,” or GUI, may be used in
the singular or the plural to describe one or more graphical
user interfaces and each of the displays of a particular graphi-
cal user interface. Therefore, a GUI may represent any
graphical user interface, including but not limited to, a web
browser, a touch screen, or a command line interface (CLI)
that processes information and efficiently presents the infor-
mation results to the user. In general, a GUI may include a
plurality of user interface (UI) elements, some or all associ-
ated with a web browser, such as interactive fields, pull-down
lists, and buttons operable by the business suite user. These
and other Ul elements may be related to or represent the
functions of the web browser.

Implementations of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com-
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-

10

15

20

25

30

35

40

45

50

55

60

22

end components. The components of the system can be inter-
connected by any form or medium of wireline and/or wireless
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN), a radio access network (RAN), a metropoli-
tan area network (MAN), a wide area network (WAN),
Worldwide Interoperability for Microwave Access
(WIMAX), a wireless local area network (WLAN) using, for
example, 802.11a/b/g/n and/or 802.20, all or a portion of the
Internet, and/or any other communication system or systems
at one or more locations. The network may communicate
with, for example, Internet Protocol (IP) packets, Frame
Relay frames, Asynchronous Transfer Mode (ATM) cells,
voice, video, data, and/or other suitable information between
network addresses.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

In some implementations, any or all of the components of
the computing system, both hardware and/or software, may
interface with each other and/or the interface using an appli-
cation programming interface (API) and/or a service layer.
The API may include specifications for routines, data struc-
tures, and object classes. The API may be either computer
language independent or dependent and refer to a complete
interface, a single function, or even a set of APIs. The service
layer provides software services to the computing system.
The functionality of the various components of the computing
system may be accessible for all service consumers via this
service layer. Software services provide reusable, defined
business functionalities through a defined interface. For
example, the interface may be software written in JAVA, C++,
or other suitable language providing data in extensible
markup language (XML) format or other suitable format. The
API and/or service layer may be an integral and/or a stand-
alone component in relation to other components of the com-
puting system. Moreover, any or all parts of the service layer
may be implemented as child or sub-modules of another
software module, enterprise application, or hardware module
without departing from the scope of this disclosure.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any invention or on the scope of what may be
claimed, but rather as descriptions of features that may be
specific to particular implementations of particular inven-
tions. Certain features that are described in this specification
in the context of separate implementations can also be imple-
mented in combination in a single implementation. Con-
versely, various features that are described in the context of a
single implementation can also be implemented in multiple
implementations separately or in any suitable sub-combina-
tion. Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination can in
some cases be excised from the combination, and the claimed
combination may be directed to a sub-combination or varia-
tion of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation and/or integration of vari-

US 9,137,162 B2

23

ous system modules and components in the implementations
described above should not be understood as requiring such
separation and/or integration in all implementations, and it
should be understood that the described program components
and systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.
Particular implementations of the subject matter have been
described. Other implementations, alterations, and permuta-
tions of the described implementations are within the scope of
the following claims as will be apparent to those skilled in the
art. For example, the actions recited in the claims can be
performed in a different order and still achieve desirable
results.
Accordingly, the above description of example implemen-
tations does not define or constrain this disclosure. Other
changes, substitutions, and alterations are also possible with-
out departing from the spirit and scope of this disclosure.
What is claimed is:
1. A computer-implemented method comprising:
calculating a direct connection cost for network traffic
between two points in a network, the network including
one or more nodes of an accelerated application delivery
(AccAD) network;

calculating an AccAD connection cost for the network
traffic between the two points in the network using at
least one node of the AccAD network;
comparing the calculated direct connection cost and the
AccAD connection cost; and

determining whether the direct connection cost is greater
than the sum of the AccAD connection cost and a mini-
mum cost threshold value, wherein the minimum cost
threshold value is added to the AccAD connection cost
to generate at least one virtual neighborhood of AccAD
network nodes and to prevent accelerated application
delivery within the at least one virtual neighborhood by
restricting accelerated application delivery to between
only the most costly paths through the AccAD network.

2. The method of claim 1, wherein connection cost can
include consideration of at least one of bandwidth, latency, a
network hop count, a number of network links between the
two points, CPU usage, memory usage, disk space usage, a
quality-of-service (QoS) value, a round trip time (RTT) value,
a network congestion value, an amount of network traffic, a
number of network connections, network connection interval
length, a traffic type, preference tables, or physical destina-
tion.

3. The method of claim 1, comprising routing the network
traffic directly between the two network points if the direct
connection cost is less than or equal to the sum of the AccAD
connection cost and the minimum cost threshold value.

4. The method of claim 1, comprising routing the network
traffic between the two points in the network through the at
least one node of the AccAD network if the direct connection
cost is greater than the sum of the AccAD connection cost and
the minimum cost threshold value.

5. The method of claim 1, wherein the AccAD network is
divided into at least two virtual neighborhoods.

6. The method of claim 5, wherein network traffic between
AccAD network nodes in a virtual neighborhood is not accel-
erated.

7. The method of claim 5, wherein network traffic between
virtual neighborhoods is accelerated.

8. The method of claim 5, comprising accelerating at least
one network link between the AccAD network nodes once an
acceleration of another network link between any two AccAD
network nodes is required.

20

40

45

55

65

24

9. The method of claim 8, wherein the acceleration of the at
least one network link between the AccAD network nodes is
performed regardless of the minimum cost threshold value
and an association of the AccAD network nodes to one or
more virtual neighborhoods.

10. A non-transitory, computer-readable medium storing
computer-readable instructions executable by a computer and
operable to:

calculate a direct connection cost for network traffic
between two points in a network, the network including
one or more nodes of an accelerated application delivery
(AccAD) network;

calculate an AccAD connection cost for the network traffic
between the two points in the network using at least one
node of the AccAD network;

compare the calculated direct connection cost and the
AccAD connection cost; and

determine whether the direct connection cost is greater
than the sum of the AccAD connection cost and a mini-
mum cost threshold value, wherein the minimum cost
threshold value is added to the AccAD connection cost
to generate at least one virtual neighborhood of AccAD
network nodes and to prevent accelerated application
delivery within the at least one virtual neighborhood by
restricting accelerated application delivery to between
only the most costly paths through the AccAD network.

11. The medium of claim 10, wherein connection cost can
include consideration of at least one of bandwidth, latency, a
network hop count, a number of network links between the
two points, CPU usage, memory usage, disk space usage, a
quality-of-service (QoS) value, a round trip time (RTT) value,
a network congestion value, an amount of network traffic, a
number of network connections, network connection interval
length, a traffic type, preference tables, or physical destina-
tion.

12. The medium of claim 10, comprising instructions to
route the network traffic directly between the two network
points if the direct connection cost is less than or equal to the
sum of the AccAD connection cost and the minimum cost
threshold value.

13. The medium of claim 10, comprising instructions to
route the network traffic between the two points in the net-
work through the at least one node of the AccAD network if
the direct connection cost is greater than the sum of the
AccAD connection cost and the minimum cost threshold
value.

14. The medium of claim 10, wherein the AccAD network
is divided into at least two virtual neighborhoods.

15. The medium of claim 14, wherein network traffic
between AccAD network nodes in a virtual neighborhood is
not accelerated.

16. The medium of claim 14, wherein network traffic
between virtual neighborhoods is accelerated.

17. The medium of claim 14, comprising instructions to
accelerate at least one network link between the AccAD net-
work nodes once an acceleration of another network link
between any two AccAD network nodes is required.

18. The medium of claim 17, wherein the acceleration of
the at least one network link between the AccAD network
nodes is performed regardless of the minimum cost threshold
value and an association of the AccAD network nodes to one
or more virtual neighborhoods.

19. A system, comprising:

a memory configured to contain at least one node of an
accelerated application delivery (AccAD) network; at
least one computer interoperably coupled with the
memory and configured to:

US 9,137,162 B2

25

calculate a direct connection cost for network traffic
between two points in a network, the network includ-
ing one or more nodes of the AccAD network;

calculate an AccAD connection cost for the network
traffic between the two points in the network using at
least one node of the AccAD network;

compare the calculated direct connection cost and the
AccAD connection cost; and

determine whether the direct connection cost is greater
than the sum of the AccAD connection cost and a
minimum cost threshold value, wherein the minimum
cost threshold value is added to the AccAD connec-
tion cost to generate at least one virtual neighborhood
of AccAD network nodes and to prevent accelerated
application delivery within the at least one virtual
neighborhood by restricting accelerated application
delivery to between only the most costly paths
through the AccAD network.

20. The system of claim 19, wherein connection cost can
include consideration of at least one of bandwidth, latency, a
network hop count, a number of network links between the
two points, CPU usage, memory usage, disk space usage, a
quality-of-service (QoS) value, a round trip time (RTT) value,
a network congestion value, an amount of network traffic, a
number of network connections, network connection interval
length, a traffic type, preference tables, or physical destina-
tion.

10

15

20

25

26

21. The system of claim 19, configured to route the network
traffic directly between the two network points if the direct
connection cost is less than or equal to the sum of the AccAD
connection cost and the minimum cost threshold value.

22. The system of claim 19, configured to route the network
traffic between the two points in the network through the at
least one node of the AccAD network if the direct connection
cost is greater than the sum of the AccAD connection cost and
the minimum cost threshold value.

23. The system of claim 19, wherein the AccAD network is
divided into at least two virtual neighborhoods.

24. The system of claim 23, wherein network traffic
between AccAD network nodes in a virtual neighborhood is
not accelerated.

25. The system of claim 23, wherein network traffic
between virtual neighborhoods is accelerated.

26. The system of claim 23, configured to accelerate at least
one network link between the AccAD network nodes once an
acceleration of another network link between any two AccAD
network nodes is required.

27. The system of claim 26, wherein the acceleration of the
at least one network link between the AccAD network nodes
is performed regardless of the minimum cost threshold value
and an association of the AccAD network nodes to one or
more virtual neighborhoods.

#* #* #* #* #*

